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!. INTRODUCTION 

The relation between the order of growth of an entire function 

in C n and the area of its zero-variety, and more generally 

Nevanlinna theory in several complex variables, has been extensively 

studied in the recent past by Chern, Griffiths, Lelong, Stoll, 

among others (see, e.g., [12] for references). The techniques used 

by these authors are essentially similar to the differential-geometric 

method employed by Nevanlinna and Ahlfors in the case of a single 

variable. 

Many problems in analysis require a similar extension (from one 

to several variables) of results known for functions defined in 

angular regions of C I. For reasons that will become apparent below, 

it is not possible to reduce the problem to the one-variable case; 

nevertheless, using a potential-theory approach one can still obtain 

the required estimates (Theorem 2 of w below). 

I wish to thank Professor M. Schiffer for the very helpful com- 

ments he made in our conversations. 

2. PRELIMINARIES 

Let us recall some standard notation (cf. [7]). 

derivative in ~n can be written as d = B + ~ , 

_~i ([ _ B) we obtain 
4~ 

dd c : i ~[. 
2~ 

The exterior 

and with d e = 

* This research was supported in part by NSF Grant GP-38882. 



~m 
In we indicate by A : A m the Laplace operator, Ag = x_~, 

j=l ax. ] 

so it makes sense to apply A2n to functions of n-complex variables 

by identifying ~n = ~2n. 

If z = (Zl,...,Zn) E C n, llzll 2 = IZl 12 + .-. + IZn 12, we w-rite 

= { l lzl l  < r}, S r = (z : l lz l l  = r} for 0 < r < ~. More B(0,r) = B r = 

generally, B(a,r) = {z : llz-all ~ r}. We can define two (l,l)-forms 

r ~ by 

n 

_ i E1 dzjAdzj r : ddClfzll 2 - ~-~ j= 

dd c l og l l  zll 2 = , z~ O. 

Then Cn r ^ "'" ^ r (n times) is the volume form of ~n = , and 

more generally the restriction of Ck to any k-dimensional (complex) 

linear variety is the euclidean area form of the variety. On the 

other hand, ~n-I is a measure of "projective" area: it is invariant 

under unitary transformations and complex dilations, and 

(i) ~2n-I : dc l~ ^ ~n-l' 

area form in the unit sphere S 1 = {Ilzll = I}, ~ ~2n-i is the i. 
1 

If f is an analytic function, then loglf(z) I is subharmonic, 

i.e. A2n ioglf(z) I defines a positive measure, whose support is 

the analytic variety V = {z : f(z) = 0}. Moreover, 

(2 )  ddC l~ ^ Cn-i = ~(A loglf(z)I)r 

it follows that the l.h.s, of (2) defines the euclidean area form in 

V. As usual, we can define the countin~ function by 

~(r) : ~ ddC l~ ^r 0 < r < ~. 
r 

More usually, if D is a cone in ~n (having vertex at the origin) 

and D r = D n B r, then 



(3) sD(r) : ID dd c log If(z)I 2^ Cn-l" 
r 

Similarly, we have the projective area of V, defined 

9(r) : ~ dd c log IfCz)12^ ~n-l" 

r 

If we assume further that f(0) ~ 0, we have the following crucial 

formula in Nevaniinna theory 

(4) ~(r) : ~(r) 
r2n-2 

Sketch of the proof. Clearly dCn_l = d~n_l : 0. Furthermore, 

one sees easily that ~n-i = IIzll-2n+2r hence, by Stokes theorem, 

9(r) : I ddCl~ = [ 
B S 
r r 

dCl~ ^~n-I 

I Cn-i = 1 : d eloglf(z)I 2 A ~ ~ a(r). 
S r r 
r 

~D 

B r �9 

Remark I. This simple relation fails when ~ is replaced by 

due to the appearance of additional boundary terms. 

Remark 2. For n = I, a(r) = 9(r) = number of zeroes of f 

The next important formula allows us to compute ~(r) by re- 

ducing it to the one variable case. 

(5) ~(r) = [ 
~2n_l(~ ) J ~s 1 

It is Crofton's formula [ii] 

I dd c loglf(X~)l 2, 
IXJ~r 

in 

where the operator dd c acts on the complex variable l, 

inner integral just counts the number of zeros of g(k) : f(kz) 

{fxl A r}. 

Let us recall that a function f is said to be of order 

(p > 0) 

so the 

in 

P 

and finite type if there exist constants A, B > 0 such 

that 



If(z)l =< A exp {BllzllP}. 

For such functions, it is known (cf. [9, p.44]) that 

r§ ~i IlkI~ r ddCloglf(kz)12 = < epB 

and therefore by (4) and (5) 

(6) lim o(r) = lim 9(r) < ePB. 
r~ r p+2n-2 r§ r p = 

Similarly, Crofton's formula shows that if f is a polynomial of 

degree m, then 9(r) < m. 

We now recall two theorems from the theory of functions of one 

complex variable. Let g be an analytic function defined in the 

half-plane {Re ~ ~ 0}, of order p and finite type, such that 

g(0) # 0. Denote by 9g(r) the number of zeroes of g in the disk 

{~ : I~ - r/21 ~ r /2 } .  

THEOREM I. [9, p.185] If p > 1 then there exists an increasing 

function Sg(8) such that 

~g(r) (i +llp) p ~12 
lim < cosPe dSg(e) < C B 
r+~ r p = 2~(p-l) J - ~ 2  = P 

where Cp is a positive constant independent of g and 

constant involved in the definition of finite type. 

B is the 

Remark 3. By using conformal mappings, we can obtain a similar 

theorem for functions of order p > T/e, defined in the angle 

larg I I ~ e/2. This possibility does not exist in C n, ' n > 2, 

since by a theorem of Liouville the only conformal maps are the M~bius 

transformations. 

The generalization of theorem I to cones in C n is the objective 

of this paper and appears in w 



Suppose f is holomorphic of order p and finite type, in an 

open cone D in C n. We define the indicator function of f by 

I I 
(7) h (z) = lim lim log,f(ry), z # 0. 

y+z r+~ r p 
yED 

This function is (pluri)-subharmonic and homogeneous of degree 

p. For n = i, the outer lim is not necessary and the function 

h is even continuous. 

all 

(8) 

We say f 

z E D n S I , 

is of completely regular growth i__qn D if for almost 

we have 

* loglf(rz)1 
h (z) = lim 

r§ r p 

Then we have the following 

THEOREM II. [9, p.182] Let g be an analytic function of order 

p > 0 and completely regular growth in {k E ~l : Re k > 0}. Then 

there exists an increasing function Sg(e) such that 

(r) 712 
(9) lim g _ 1 [ cosP8 dSg(8) < 

r+ ~ rP 2~p ~-~/2 

The meaning of 9 is the same as in Theorem I. The generalization 
g 

of formula (9) to several variables is due to Gruman [7]. 

3. 

define 

(10) 

= N O B  and as before N r r" 

Using the method of L. Gruman, 

FUNCTIONS OF COMPLETELY REGULAR GROWTH 

We assume the number of variables is n > 2. 

N to be the cone generated by N, i.e. 

N : {tz : z ( N, t > 0}, 

If N r Sl, we 

we prove the following result. 



PROPOSITION i. Let p be a non-zero polynomial, N an open set 

C SI, and f a function analytic in N such that for every compact 

K c N, we have 

(ii) f(z) = p(z) + O(IIzll -I) 

uniformly in K . Then 

2-2n 
(12) lim ~K (r) ~ < ~. 

r~ log r 

Proof. If z E SI, t > 0, p(tz) : tmpm(Z) + o(tm-l), where 

Pm is a homogeneous polynomial of degree m. Clearly both p and 

f are of completely regular growth in the sense that if z ( N and 

pm(Z) # 0 then 

(13) lira loglf(rz) I _ lira log [p(rz) ] = m. 
r~ log r r+~ iog r 

Take any such z E N and pick e, 0 < s < I, such that D' = 

{w ( S 1 : llw-zll < s} c N. Let D = {w ( S 1 : llw-zll < s/2}. For 

almost all s > 0 we have f(sz) # 0, so from Crofton's formula one 

obtains the Jensen formula in n-variables 

(14) I loglf(s(z+e~))[m2n_l(~) loglf(sz) I 

S 1 

i~ s dt 
: asz(t) ~ ' 

where Gsz(t) = I ddC l~ r 
B(sz,t) 

The right hand side of (14) satisfies 

i~ s dt ~sz(3/4 es) 
~ ~ ~ kl(e) s2n-2 

where kl(e) is a positive constant. 



In other words, for any r > 1 we have 

( i 5 )  kl(e) asz( es) ds 
1 s 2n-I 

I I r If(zs+es~)I ds 
< ~2n_l(~) log -- 
-- S 1 1 if(sz) I s 

Since r > i, we can find an integer m ~ i such that 

(16) (l+e/4) m < r < (l+e/4) m+l. 

Define 

(17) a : (i + El4) q q : 0,-..,m. q 

< s < a From the definition of D it follows that for aq_ 1 q 

(18) D a \ D a r B(sz, 3~ s) q : l,...,m. 
q q-i 4 

Hence 

(aq - aq_ I) ID ddC l~ 12 ^ r a\Da 
q q-i 

a 

: (aq- aq_ I) la q d~D (s) 
q-i 

ds 
< aq 2n-I q ~sz ( -- s) 2n-i 

q-i s 

Therefore 

a a a 
a2n-i ( ~ -l) fa q s2-2ndq D~(s) <= a2n-I L q q  
q-i aq_ 1 q-i q-i 

l-2n (~cs) ds 
s sz 4 

and we obtain 



a a 

+s laq 2-2n d~ ~ e  laq sl-2n ~ (19) 4 s (s) < Osz ( es) ds. 

q-i q-i 

By adding the inequalities in (19) for q = l,.'.,m and using (15) 

and (16) we obtain with a new constant k2(e) > 0 

(20) k2(~) ~ < ~2n_l(~) log 
a0 = S1 if(sz) I s 

From (ii) it follows that for w E D'=\D'\ 1 

loglf(w) I < m logllwll + 0(i) 

loglf(sz) I : m log s + 0(i). 

Therefore the integral on the right hand side of (20) can be 

bounded by (constant) log r; the left hand side can be integrated by 

parts, and we finally obtain 

~D(r) 
--~ ~ k 3 log r + k4, 
r 

where k3, k 4 are positive constants depending on e and z. We 

obtain a similar inequality for any compact K c N, by choosing a 

finite covering of K by sets D as above. 

Remark 4. From (ii) it follows that the analytic variety V 

defined by f in K\K R lies within an c-neighborhood of the variety 

Vp = {z : p(z) = 0} for R sufficiently large. It follows from a 

theorem of Rudin [i0] that if an analytic variety V in C n lies 

within an e-neighborhood of an algebraic variety then it is itself 

algebraic and therefore 9(r) is bounded. Additional assumptions on 

the function f of Proposition 1 should enable one to eliminate the 

factor log r from the conclusion; for example~ one might assume 

that for any z,~ E C n, II~ll = i, the number of zeroes of g(l) = 

f(z+k~) (k E C) in a disk of radius 1 is bounded independently 



of z and ~. 

An example of a function f with the property mentioned in the 

above remark is the exponential polynomial, 

(21)  f(z) = [ a j(z) exp<z,~j> s > 2. 
j=l 

Here the aj are non-zero polynomials,n ~'3 = (aj,l,-.',aj,n) ~ cn 

are distinct and <z,~j> = [ Zkaj, k. (cf. [13].) In this case, 
k=l 

is of completely regular type of order 1 with indicator function 

(22) h (z) = max Re<z,~->. 
J J 

Then by Crofton's formula 

(23) lim o(r) = I h*(z)m2n-l(Z)" 
r-~ ~ S I 

As a corollary of Proposition 1 we obtain the existence of regions 

with very few zeroes for f; it is enough to take 

N (k) = {z ( S I : h*(z) = Re<Z,ak> > max Re<z >} 
j~k '~J 

-<Z'ek> N~k) 
and fk(z) = e f(z) in (cf. [2]). 

4. GENERAL CASE 

Taking into account formulas (2) and (3), we can reduce the 

problem of estimating the number of zeroes of a non-zero analytic 

function in a cone D to estimating qD (r) = fD Au, the so-called 
r 

Riesz mass of the subharmonic function u. Though the method used 

below is more general T, we shall restrict ourselves to circular 

cones in ~m. 

By x = (Xl,.-.,Xm), Ixl we denote respectively a point in ~m 

t e.g. if D fl S I has a smooth boundary with bounded curvature. 



i0 

and its euclidean norm. To keep the notation uniform we will assume 

m ~ 3, though the case m : 2 is easier to deal with. We introduce 

polar coordinates (r,81,...,em_ I) by 

(24) 0 < r : Ixl, x : x/r, 81 : arc cos x I (0 ~ e I ~ ~) 

where the remaining 8's are defined in the usual manner. Then the 

Laplacian can be written as 

(25) A m A : r l-m 8 . m-i 8. = ~-~ tr ~-~) + r-2~, 

where ~ is an operator involving only the angular variables, name- 

ly the Laplace-Beltrami operator on the sphere ~ = {x E ~m : ix I = i}. 

There is only one case where we need an explicit description of 6. 

Assume the harmonic function v depends only on the coordinates r, 

and that v(r) = v(r,8 I) = rPf(81) , p > 0. Then 81 , 

Av = vrr + m-lr Vr + r-2 Ve 8 + (m-2)r-2(cot 81)v e = 0 
i ! l 

o r  

( 26 )  f"(8 I) + (m-2)cot 81 f'(8 I) + p(p+m-2)f(8 I) : 0. 

By the change of variable ~ : cos e l, f(e I) : g(~), we have 

(27) (l-~2)g"(~) - (m-l)~g'(~) + p(p+m-2)g(~) : 0. 

The solutions of (27) that are regular for ~ = i are the Gegenbauer 

functions, given explicitly [i, vol.3, p.276] by 

m-2 
2 (~) = F(p+m-2) F(p+m-2;-p;~; ~_i~) , 

(28) g(~) = Cp F(p+l)F(m-2) 

where F(a;8;y;t) denotes the hypergeometric function regular for 

F(p+m-2) ~ 0 and it follows from a t = 0. Furthermore, g(1) = F(p+l)F(m-2) 

theorem of F. Klein (see [8, p.286]) that the function g has 

exactly [p+l] zeroes in (-i,i] if p not integral, and p zeroes 



ii 

if p is a positive integer (where [s] = integral part of s). 

A circular open cone K(e), 0 < a < ~, is defined by the 

condition 

( 2 9 )  K ( ~ )  = { x  ~ 0 : 0 ~ e 1 < e } .  

Let S(a) = K(a) O S I = {x : r = i, 0 ! e I < ~}. Then the eigenfunc- 

tions f and eigenvalues u of 6 in S(e) are defined by the 

condition 

(30)  6f + ~f = 0 in S(e), f : 0 on ~S(e). 

Since 6 is an elliptic operator, we obtain a sequence of eigenval- 

ues 0 < Pl < ~2 < "''" Then we can write 

(31) p = p(p+m-2), p > 0. 

Corresponding eigenfunctions can be found which are functions only of 

m-2 

2 (cos e I) where the O'S are charac- of 81, namely f0(81) = Cp 

terized by the condition 

m-2 

( 3 2 )  C 2 (cos e) = 0. 
P 

For instance, for ~ = ~/2 we obtain Pl = l, independent of the 

dimension m. 

It follows from the above that for any p > 0, p ~ pl~P2 ,-.- 

we can find a harmonic function v in K(~) and a positive 
P 

constant K with the properties 
P 

(33) Iv0(x) I ~ Kpr p, Vp(X) = -r p for x E ~K(e). 

In fact~ we can take v to be a constant multiple of f . For p = 
P P 

pn ~ and e' sufficiently close to e (0 < e' < e) we can similarly 

find harmonic functions v (actually depending also on e') in 
P 
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K(~') such that the conditions above are satisfied with 3K(a) 

replaced by 3K(e'). 

Let us denote by G(x) = g(x,a) the Green's function of K(~) 

with pole at a. Let ~n be the above eigenfunction with eigenvalue 

~n' normalized by the condition [ I~n 12 ~m-i = i. Then follow- 

J S(a) 

ing Bouligand [3], Lelong-Ferrand has proved that for r > lal = t 

(34) G(x,a) = c a ~ t pn ~On. ~n(a~)~n(X~) 

n:l /(m-2) ~ + 4~ n 

where On = -Pn - m + 2, and c a is the area of S(~) (see for 

instance [4] or [6]). From known estimates of these ~'s and ~'s 

we can conclude that if a ~ (i,0,...,0), r ~ 2, then there exist 

positive constants kl, k 2 such that 

Pl+m-2 
(35) F.]_ ~ G(x) dist(x*,~S(a)) -I r ~ k 2 

and we have also 

Pl 
Ol-i t ~l(X~)~l(a *) Ol-i 

(36) S-~G (x) = olr c + o(r ) Sr 
/(m-2) +4U 1 

where r § =. For R ~ 2, the Green's function GR(X) = GR(X,a) 

with pole at a of the region 

(37) KR(a) : {x E KCa) : r < R} 

can be found to be 

(38) 
R m-2 R 2 

GR(X) : G(x) - (~) G(-yx). 
r 

Hence it follows from (36) that there exists a constant k 3 > O 

(39) 
O I-I 

~G R(x) I < k S R 
0 _<_ - ~ i r=R 
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Finally, we need a lower bound on G R on sufficiently large 

subsets of KR(a). Take x such that 2 ~ r = eR, 0 < E < i; we 

obtain from (35) 

-Pl-m+2( kl Pl) 
GR(X) ~ dist(x ~,~S(~))R Pl+m_2 k26 �9 

c 

0 + " The expression in parentheses increases to +~ when c § There- 

fore, there exists c 0 > 0 such that for any r, R satisfying 

2 ~ r ~ EoR, 

(40) 

We can now prove our pr, incipal result. 

THEOREM i. Let u be a 8ubharmonic function in K(~), which i8 

harmonic near 0 and satisfies u(x) ~ BrP+c for some positive 

constants B, C, p. Then for any 0 < 8 < ~, we can find a 

constant M, M = M(u,8) such that for R ~ 2 

I Au < MR p*+m- 2 ' 

KR.(6) = 
p~ : max(p,pl).t 

Proof. Let us leave aside for the moment the exceptional cases 

P = Pl,P2,'''. Since u Z -% the set {u = -~} has measure zero 

and therefore we can find a point a 6 K(e) as close as we want to 

(i,0~0,-'',0) such that u(a) ~ -~. Applying Green's formula to the 

function w = u - Bv - C, v as defined in (33), we have for 
P P 

R> 2 

(41) I I SGR GR(x,a)Au + w(a) : w -~ ~m-i 
KR(~) ~KR(~) 

where n denotes the inner normal. Clearly, w ~ 0 on 3K(e); 

$for p = p I we have to take P* = P I + e, e > O. 
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therefore, setting SR(e) = {x : x* E S(e), Ixl = R}, we have 

I ~GR < I 3GR P+~ 
w -~-n- = A(I+Kp )Rp < MIR [ ~m-i 

~KR(~) SR(~ ) ~n = JSR(~) 

P-Pl < M~R 

These inequalities follow from (33), (39), and the definition of 

~i" Using (40), we conclude that 

I of+m-2 I (42) Au < M3RP+m-2 + M4R lw(a)I + Au. 

Ke0R(8 ) = K2(a ) 

From here the conclusion of the theorem clearly follows, since 

the fact that u is harmonic near zero implies [ Au < ~. The 
J K2(~) 

exceptional cases are treated similarly by means of the construction 

in (33) above. 

Remark 5. Clearly, the interesting case of theorem 1 occurs 

when P > Pl" If P ~ PI' the Phragmgn-LindelSf theorem (cf. [5,6] 

for references) shows that w ~ 0 everywhere in K(e); the dominant 

term lw(a) l in inequality (42) just gives the integrability condi- 

tion u ~ -~. 

Remark 6. The constant M 3 in (42) is proportional to B. Thus, 

for P > Pl' theorem I assets that 

R-P-m+2 I 

KR(6) 
Au < C(6)B. 

This estimate can be improved slightly to a bound analogous to that 

in Theorem I (w 

Because of its importance, we restate Theorem i in terms of 

analytic functions. 
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THEOREM 2. Suppose f is an analytic function in the cone K(~) of 

C n such that f(0) # 0 and f has order p > pl(~) and finite 

type. If as(R) denotes the area of the variety V N KR(8) (8 < ~)j 

we have 

~BCR) 
lim < C(8)B 
R+~ ~ 

(B is the constant appearing in the definition of the type of f) 
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