an estimate for the number of zeroes of analytic
 FUNCTIONS IN n-DIMENSIONAL CONES
 CARLOS A, BERENSTEIN*

1. INTRODUCTION

The relation between the order of growth of an entire function in \mathbb{C}^{n} and the area of its zero-variety, and more generally Nevanlinna theory in several complex variables, has been extensively studied in the recent past by Chern, Griffiths, Lelong, Stoll, among others (see, e.g., [12] for references). The techniques used by these authors are essentially similar to the differential-geometric method employed by Nevanlinna and Ahlfors in the case of a single variable.

Many problems in analysis require a similar extension (from one to several variables) of results known for functions defined in angular regions of \mathbb{C}^{\perp}. For reasons that will become apparent below, it is not possible to reduce the problem to the one-variable case; nevertheless, using a potential-theory approach one can still obtain the required estimates (Theorem 2 of $\$ 4$ below).

I wish to thank Professor M. Schiffer for the very helpful comments he made in our conversations.
2. PRELIMINARIES

Let us recall some standard notation (cf. [7]). The exterior derivative in \mathbb{C}^{n} can be written as $d=\partial+\bar{\partial}$, and with $d^{c}=$ $\frac{i}{4 \pi}(\bar{\partial}-\partial)$ we obtain

$$
d d^{c}=\frac{i}{2 \pi} \quad \partial \bar{\partial} .
$$

[^0]In \mathbb{R}^{m} we indicate by $\Delta=\Delta_{m}$ the Laplace operator, $\Delta g=\sum_{j=1}^{m} \frac{\partial^{2} g}{\partial x_{j}^{2}}$, so it makes sense to apply $\Delta_{2 \Omega}$ to functions of Ω-complex variables by identifying $\mathbb{C}^{n}=\mathbb{R}^{2 n}$.

$$
\text { If } z=\left(z_{1}, \cdots, z_{n}\right) \in \mathbb{C}^{n}, \quad\|z\|^{2}=\left|z_{1}\right|^{2}+\cdots+\left|z_{n}\right|^{2} \text {, we write }
$$ $B(0, r)=B_{r}=\{\|z\| \leqq r\}, \quad S_{r}=\{z:\|z\|=r\}$ for $0<r<\infty$. More generally, $B(a, r)=\{z:\|z-a\| \leq r\}$. We can define two ($1, I$)-forms ϕ, ψ by

$$
\begin{aligned}
& \phi=d d^{c}\|z\|^{2}=\frac{i}{2 \pi} \sum_{j=1}^{n} d z_{j} \wedge d \bar{z}_{j} \\
& \psi=d d^{c} \log \|z\|^{2}, \quad z \neq 0
\end{aligned}
$$

Then $\phi_{n}=\phi \wedge \cdots \wedge \phi$ (n times) is the volume form of \mathbb{C}^{n}, and more generally the restriction of ϕ_{k} to any k-dimensional (complex) linear variety is the euclidean area form of the variety. On the other hand, ψ_{n-l} is a measure of "projective" area: it is invariant under unitary transformations and complex dilations, and

$$
\begin{equation*}
\omega_{2 n-1}=d^{c} \log \|z\|^{2} \wedge \psi_{n-1} \tag{I}
\end{equation*}
$$

is the area form in the unit sphere $S_{1}=\{\|z\|=1\}, \quad \int_{s_{1}} \omega_{2 n-1}=1$. If f is an analytic function, then $\log |f(z)|$ is subharmonic, i.e. $\Delta_{2 n} \log |f(z)|$ defines a positive measure, whose support is the analytic variety $V=\{z: f(z)=0\}$. Moreover,

$$
\begin{equation*}
{d d^{c}}^{c} \log |f(z)|^{2} \wedge \phi_{n-1}=\frac{1}{2}(\Delta \log |f(z)|) \phi_{n} \tag{2}
\end{equation*}
$$

it follows that the l.h.s. of (2) defines the euclidean area form in V. As usual, we can define the counting function by

$$
\sigma(r)=\int_{B_{r}} d d^{c} \log |f(z)|^{2} \wedge \phi_{n-1} \quad 0<r<\infty
$$

More usually, if D is a cone in \mathbb{C}^{n} (having vertex at the origin) and $D_{r}=D \cap B_{r}$, then

$$
\begin{equation*}
\sigma_{D}(r)=\int_{D_{r}} d d^{c} \log |f(z)|^{2} \wedge \phi_{n-1} . \tag{3}
\end{equation*}
$$

Similarly, we have the projective area of V, defined

$$
v(r)=\int_{B_{r}} d d^{c} \log |f(z)|^{2} \wedge \psi_{n-l}
$$

If we assume further that $f(0) \neq 0$, we have the following crucial formula in Nevanlinna theory

$$
\begin{equation*}
v(r)=\frac{\sigma(r)}{r^{2 n-2}} \tag{4}
\end{equation*}
$$

Sketch of the proof. Clearly $d \phi_{n-1}=d \psi_{n-1}=0$. Furthermore, one sees easily that $\psi_{n-1}=\|z\|^{-2 n+2} \phi_{n-1}$; hence, by Stokes theorem,

$$
\begin{aligned}
v(r) & =\int_{B_{r}} d d^{c} \log |f(z)|^{2} \wedge \psi_{n-1}=\int_{S_{r}} d^{c} \log |f(z)|^{2} \wedge \psi_{n-1} \\
& =\int_{S_{r}} d^{c} \log |f(z)|^{2} \wedge \frac{\phi_{n-1}}{r^{2 n-2}}=\frac{1}{r^{2 n-1}} \sigma(r) .
\end{aligned}
$$

Remark l. This simple relation fails when σ is replaced by σ_{D} due to the appearance of additional boundary terms.

Remark 2. For $n=1, \sigma(r)=\nu(r)=$ number of zeroes of f in ${ }^{B}{ }_{r}$.

The next important formula allows us to compute $v(r)$ by reducing it to the one variable case. It is Crofton's formula [11] (5)

$$
v(r)=\int_{\xi \in \mathrm{S}_{1}} \omega_{2 \pi-1}(\xi) \int_{|\lambda| \leq r} \mathrm{dd}^{c} \log |f(\lambda \xi)|^{2},
$$

where the operator dd^{c} acts on the complex variable λ, so the inner integral just counts the number of zeros of $g(\lambda)=f(\lambda z)$ in $\{|\lambda| \leqq r\}$.

Let us recall that a function f is said to be of order ρ ($\rho>0$) and finite type if there exist constants $A, B>0$ such that

$$
|f(z)| \leqq A \exp \left\{B\|z\|^{\rho}\right\} .
$$

For such functions, it is known (cf. [9, p.44]) that

$$
\overline{\lim }_{r \rightarrow \infty} \frac{l}{r^{\rho}} \int_{|\lambda| \leq r} d d^{c} \log |f(\lambda z)|^{2} \leqq e^{\rho_{B}}
$$

and therefore by (4) and (5)

$$
\begin{equation*}
\overline{\lim }_{r \rightarrow \infty} \frac{\sigma(r)}{r^{\rho+2 n-2}}=\overline{\lim }_{r \rightarrow \infty} \frac{\nu(r)}{r^{\rho}} \leq e^{\rho_{B}} . \tag{6}
\end{equation*}
$$

Similarly, Crofton's formula shows that if f is a polynomial of degree m, then $v(r) \leqq m$.

We now recall two theorems from the theory of functions of one complex variable. Let g be an analytic function defined in the half-plane $\{\operatorname{Re} \lambda \geqq 0\}$, of order ρ and finite type, such that $g(0) \neq 0$. Denote by $\nu_{g}(r)$ the number of zeroes of g in the disk $\{\lambda:|\lambda-r / 2| \leq r / 2\}$.

THEOREM I. [9, p.185] If $\rho>1$ then there exists an increasing function $\mathbf{s}_{\mathrm{g}}(\theta)$ such that

$$
\lim _{r \rightarrow \infty} \frac{\nu_{g}(r)}{r^{\rho}} \leqq \frac{(1+1 / \rho)^{\rho}}{2 \pi(\rho-1)} \int_{-\pi / 2}^{\pi / 2} \cos ^{\rho} \theta d s_{g}(\theta) \leqq C_{\rho} B
$$

where C_{ρ} is a positive constant independent of g and B is the constant involved in the definition of finite type.

Remark 3. By using conformal mappings, we can obtain a similar theorem for functions of order $\rho>\pi / \alpha$, defined in the angle $|\arg \lambda| \leq \alpha / 2$. This possibility does not exist in $\mathbb{c}^{n},{ }^{n} \mathrm{n} \geq 2$, since by a theorem of Liouville the only conformal maps are the Möbius transformations.

The generalization of theorem I to cones in \mathbb{C}^{n} is the objective of this paper and appears in 54 .

Suppose f is holomorphic of order ρ and finite type, in an open cone D in \mathbb{C}^{n}. We define the indicator function of f by

$$
\begin{equation*}
h^{*}(z)=\overline{\lim }_{\substack{y \rightarrow z \\ y \in D}} \varlimsup_{r \rightarrow \infty} \frac{\log |f(r y)|}{r^{\rho}} \quad z \neq 0 . \tag{7}
\end{equation*}
$$

This function is (pluri)-subharmonic and homogeneous of degree ρ. For $n=1$, the outer $\overline{\lim }$ is not necessary and the function h^{*} is even continuous.

We say f is of completely regular growth in D if for almost all $z \in D \cap S_{1}$, we have

$$
\begin{equation*}
h^{*}(z)=\lim _{r \rightarrow \infty} \frac{\log |f(r z)|}{r^{\rho}} . \tag{8}
\end{equation*}
$$

Then we have the following

THEOREM II. [9, p.182] Let g be an analytic function of order $\rho>0$ and completely regular growth in $\left\{\lambda \in \mathbb{C}^{1}: \operatorname{Re} \lambda \geq 0\right\}$. Then there exists an increasing function $\mathrm{s}_{\mathrm{g}}(\theta)$ such that
(9)

$$
\lim _{r \rightarrow \infty} \frac{\nu_{g}(r)}{r}=\frac{I}{2 \pi \rho} \int_{-\pi / 2}^{\pi / 2} \cos ^{\rho} \theta d s_{g}(\theta)<\infty .
$$

The meaning of ν_{g} is the same as in Theorem I. The generalization of formula (9) to several variables is due to Gruman [7].

3. FUNCTIONS OF COMPLETELY REGULAR GROWTH

We assume the number of variables is $n \geq 2$. If $N \subset S_{1}$, we define N_{∞} to be the cone generated by N, i.e.

$$
\begin{equation*}
N_{\infty}=\{t z: z \in N, \quad t>0\}, \tag{10}
\end{equation*}
$$

and as before $N_{r}=N_{\infty} \cap B_{r}$.
Using the method of L. Gruman, we prove the following result.

PROPOSITION 1. Let P be a non-zero polynomial, N an open set $\subset S_{1}$, and f a function analytic in N_{∞} such that for every compact $K \subset N$, we have

$$
\begin{equation*}
f(z)=p(z)+O\left(\|z\|^{-1}\right) \tag{1I}
\end{equation*}
$$

uniformly in K_{∞}. Then

$$
\begin{equation*}
\overline{\lim } \sigma_{r \rightarrow \infty}(r) \frac{r^{2-2 n}}{\log r}<\infty . \tag{12}
\end{equation*}
$$

Proof. If $z \in S_{1}$, $t>0$, $p(t z)=t^{m} p_{m}(z)+O\left(t^{m-1}\right)$, where P_{m} is a homogeneous polynomial of degree m. Clearly both p and f are of completely regular growth in the sense that if $z \in N$ and $P_{m}(z) \neq 0$ then

$$
\begin{equation*}
\lim _{r \rightarrow \infty} \frac{\log \left|\hat{f}\left(r_{z}\right)\right|}{\log r}=\lim _{r \rightarrow \infty} \frac{\log \left|\rho\left(r_{z}\right)\right|}{\log r}=m \tag{13}
\end{equation*}
$$

Take any such $z \in N$ and pick $\varepsilon, 0<\varepsilon<1$, such that $D^{\prime}=$ $\left\{w \in S_{1}:\|W-z\|<\varepsilon\right\} \subset N$. Let $D=\left\{w \in S_{1}:\|w-z\|<\varepsilon / 2\right\}$. For almost all $s>0$ we have $f(s z) \neq 0$, so from Crofton's formula one obtains the Jensen formula in n-variables

$$
\begin{array}{r}
\int_{S_{1}} \log |f(s(z+\varepsilon \zeta))| \omega_{2 n-1}(\zeta)-\log |f(s z)| \tag{14}\\
=\int_{0}^{\varepsilon s} \sigma_{s z}(t) \frac{d t}{t^{2 n-1}}
\end{array}
$$

where $\sigma_{S Z}(t)=\int_{B(s z, t)} d d^{c} \log |f(w)|^{2} \wedge \phi_{n-1}$.
The right hand side of (14) satisfies

$$
\int_{0}^{\varepsilon s} \sigma_{s z}(t) \frac{d t}{t^{2 n-1}} \geq k_{1}(\varepsilon) \frac{\sigma_{s z}(3 / 4 \varepsilon s)}{s^{2 n-2}}
$$

where $k_{1}(\varepsilon)$ is a positive constant.

In other words, for any $r>l$ we have

$$
\begin{align*}
\mathrm{k}_{1}(\varepsilon) & \int_{I}^{r} \sigma_{s z}\left(\frac{3}{4} \varepsilon s\right) \frac{d s}{s^{2 n-1}} \tag{15}\\
& \leqq \int_{S_{1}} \omega_{2 n-1}(\zeta) \int_{1}^{r} \log \frac{|f(z s+\varepsilon s \zeta)|}{|f(s z)|} \frac{d s}{s} .
\end{align*}
$$

Since $r>l$, we can find an integer $m \geq 1$ such that

$$
\begin{equation*}
(1+\varepsilon / 4)^{m} \leqq r<(1+\varepsilon / 4)^{m+1} . \tag{16}
\end{equation*}
$$

Define
(17)

$$
a_{q}=(1+\varepsilon / 4)^{q} \quad q=0, \cdots, m
$$

From the definition of D it follows that for $a_{q-1} \leq s<a_{q}$

$$
\begin{equation*}
D_{a_{q}} \backslash D_{a_{q-1}} \subset B\left(s z, \frac{3 \varepsilon}{4} s\right) \quad q=1, \cdots, m \tag{18}
\end{equation*}
$$

Hence

$$
\begin{aligned}
\left(a_{q}-a_{q-1}\right) & \int_{D_{a_{q}} \backslash D_{a_{q-1}}} d d^{c} \log |f(w)|^{2} \wedge \phi_{n-1} \\
& =\left(a_{q}-a_{q-1}\right) \int_{a_{q-1}}^{a} d \sigma_{D_{\infty}}(s) \\
& \leqq a_{q}^{2 n-1} \int_{a_{q-1}}^{a_{q}} \sigma_{s z}\left(\frac{3 \varepsilon}{4} s\right) \frac{d s}{s^{2 n-1}}
\end{aligned}
$$

Therefore

$$
\begin{equation*}
\frac{\varepsilon}{4+\varepsilon} \int_{a_{q-1}}^{a_{q}} s^{2-2 n} d \sigma_{D_{\infty}}(s) \leqq \int_{a_{q-1}}^{a_{q}} s^{1-2 n} \sigma_{s z}\left(\frac{3}{4} \varepsilon s\right) d s \tag{19}
\end{equation*}
$$

By adding the inequalities in (19) for $q=1, \cdots, m$ and using (15) and (16) we obtain with a new constant $k_{2}(\varepsilon)>0$

$$
\begin{equation*}
k_{2}(\varepsilon) \int_{a_{0}}^{a_{m}} \frac{d \sigma_{D}(s)}{s^{2 \pi-2}} \leqq \int_{S_{1}} \omega_{2 n-1}(\zeta) \int_{1}^{r} \log \frac{|f(s z+s \varepsilon \zeta)|}{|f(s z)|} \frac{d s}{s} \tag{20}
\end{equation*}
$$

From (11) it follows that for $w \in D_{\infty}^{\prime} \backslash D_{i}^{\prime}$

$$
\begin{aligned}
& \log |f(w)| \leqq m \log \|w\|+O(1) \\
& \log |f(s z)|=m \log s+O(1)
\end{aligned}
$$

Therefore the integral on the right hand side of (20) can be bounded by (constant) log r; the left hand side can be integrated by parts, and we finally obtain

$$
\frac{\sigma_{D}(r)}{r^{2 n-2}} \leqq k_{3} \log r+k_{4}
$$

where k_{3}, k_{4} are positive constants depending on ε and z. We obtain a similar inequality for any compact $K \subset N$, by choosing a finite covering of K by sets D as above.

Remark 4. From (11) it follows that the analytic variety V defined by f in $K_{\infty} \backslash K_{R}$ lies within an ε-neighborhood of the variety $V_{p}=\{z: p(z)=0\}$ for R sufficiently large. It follows from a theorem of Rudin [10] that if an analytic variety V in \mathbb{C}^{n} lies within an ε-neighborhood of an algebraic variety then it is itself algebraic and therefore $\nu(r)$ is bounded. Additional assumptions on the function f of Proposition 1 should enable one to eliminate the factor log r from the conclusion; for example, one might assume that for any $z, \zeta \in \mathbb{C}^{n},\|\zeta\|=I$, the number of zeroes of $g(\lambda)=$ $f(z+\lambda \zeta)(\lambda \in \mathbb{C})$ in a disk of radius 1 is bounded independently
of z and ζ.
An example of a function f with the property mentioned in the above remark is the exponential polynomial,

$$
\begin{equation*}
f(z)=\sum_{j=1}^{\ell} a_{j}(z) \exp <z, \alpha_{j}>\quad \ell \geqq 2 . \tag{21}
\end{equation*}
$$

Here the a_{j} are non-zero polynomials, $\alpha_{j}=\left(\alpha_{j, 1}, \cdots, \alpha_{j, n}\right) \in \mathbb{C}^{n}$ are distinct and $\left\langle z, \alpha_{j}\right\rangle=\sum_{k=1}^{n} z_{k} \alpha_{j, k}$. (cf. [13].) In this case, f is of completely regular type of order 1 with indicator function

$$
\begin{equation*}
h^{\prime \prime}(z)=\max _{j} \operatorname{Re}<z, \alpha_{j}>. \tag{22}
\end{equation*}
$$

Then by Crofton's formula

$$
\begin{equation*}
\lim _{r \rightarrow \infty} \frac{\sigma(r)}{r^{2 n-1}}=\int_{S_{1}} h^{*}(z) \omega_{2 n-1}(z) \tag{23}
\end{equation*}
$$

As a corollary of Proposition 1 we obtain the existence of regions with very few zeroes for f; it is enough to take

$$
N^{(k)}=\left\{z \in S_{I}: h^{*}(z)=\operatorname{Re}\left\langle z, \alpha_{k} \gg \max _{j \neq k} \operatorname{Re}<z, \alpha_{j}>\right\}\right.
$$

and $f_{k}(z)=e^{-\left\langle z, \alpha_{k}\right\rangle} f(z)$ in $N_{\infty}(k)$ (cf. [2]).

4. GENERAL CASE

Taking into account formulas (2) and (3), we can reduce the problem of estimating the number of zeroes of a non-zero analytic function in a cone D to estimating $\sigma_{D}(r)=\int_{D_{r}} \Delta u$, the so-called Riesz mass of the subharmonic function u. Though the method used below is more general ${ }^{\dagger}$, we shall restrict ourselves to circular cones in \mathbb{R}^{m}.

By $x=\left(x_{1}, \cdots, x_{m}\right), \quad|x|$ we denote respectively a point in \mathbf{R}^{m}

[^1]and its euclidean norm. To keep the notation uniform we will assume $m \geqq 3$, though the case $m=2$ is easier to deal with. We introduce polar coordinates ($r, \theta_{1}, \cdots, \theta_{m-1}$) by
(24)
$$
0<r=|x|, \quad x^{*}=x / r, \quad \theta_{1}=\arccos x_{1}^{*} \quad\left(0 \leq \theta_{1} \leq \pi\right)
$$
where the remaining $\theta^{\prime} s$ are defined in the usual manner. Then the Laplacian can be written as
\[

$$
\begin{equation*}
\Delta_{m}=\Delta=r^{I-m} \frac{\partial}{\partial r}\left(r^{m-1} \frac{\partial}{\partial r}\right)+r^{-2} \delta, \tag{25}
\end{equation*}
$$

\]

where δ is an operator involving only the angular variables, namely the Laplace-Beltrami operator on the sphere $S_{1}=\left\{x \in \mathbb{R}^{\mathbb{R}}:|x|=1\right\}$. There is only one case where we need an explicit description of δ. Assume the harmonic function v depends only on the coordinates \mathbf{r}, θ_{1}, and that $v(r)=v\left(r, \theta_{1}\right)=r^{\rho} f\left(\theta_{1}\right), \rho>0$. Then

$$
\Delta v=v_{r r}+\frac{m-1}{r} v_{r}+r^{-2} v_{\theta_{1} \theta_{1}}+(m-2) r^{-2}\left(\cot \theta_{1}\right) v_{\theta_{1}}=0
$$

or
(26)

$$
f^{\prime \prime}\left(\theta_{1}\right)+(m-2) \cot \theta_{1} f^{\prime}\left(\theta_{1}\right)+\rho(\rho+m-2) f\left(\theta_{1}\right)=0 .
$$

By the change of variable $\xi=\cos \theta_{1}, f\left(\theta_{1}\right)=g(\xi)$, we have

$$
\begin{equation*}
\left(1-\xi^{2}\right) g^{\prime \prime}(\xi)-(m-1) \xi g^{\prime}(\xi)+\rho(\rho+m-2) g(\xi)=0 . \tag{27}
\end{equation*}
$$

The solutions of (27) that are regular for $\xi=1$ are the Gegenbauer functions, given explicitly [l, vol.3, p.276] by

$$
\begin{equation*}
g(\xi)=c_{\rho}^{\frac{m-2}{2}}(\xi)=\frac{\Gamma(\rho+m-2)}{\Gamma(\rho+1) \Gamma(m-2)} F\left(\rho+m-2 ;-\rho ; \frac{m-1}{2} ; \frac{1}{2}-\frac{1}{2} \xi\right), \tag{28}
\end{equation*}
$$

where $F(\alpha ; \beta ; \gamma ; t)$ denotes the hypergeometric function regular for $t=0$. Furthermore, $g(1)=\frac{\Gamma(\rho+m-2)}{\Gamma(\rho+1) \Gamma(m-2)} \neq 0$ and it follows from a theorem of F. Klein (see [8, p.286]) that the function g has exactly $[\rho+1]$ zeroes in ($-1,1]$ if ρ not integral, and ρ zeroes
if ρ is a positive integer (where [s] = integral part of s).
A circular open cone $K(\alpha), 0<\alpha<\pi$, is defined by the condition

$$
\begin{equation*}
K(\alpha)=\left\{x \neq 0: 0 \leq \theta_{1}<\alpha\right\} . \tag{29}
\end{equation*}
$$

Let $S(\alpha)=K(\alpha) \cap S_{1}=\left\{x: r=1,0 \leqq \theta_{1}<\alpha\right\}$. Then the eigenfunctions f and eigenvalues μ of δ in $S(\alpha)$ are defined by the condition

$$
\begin{equation*}
\delta f+\mu f=0 \quad \text { in } S(\alpha), f=0 \quad \text { on } \quad \partial S(\alpha) . \tag{30}
\end{equation*}
$$

Since δ is an elliptic operator, we obtain a sequence of eigenvalLes $0<\mu_{1}<\mu_{2}<\cdots$. Then we can write

$$
\begin{equation*}
\mu=\rho(\rho+m-2), \quad \rho>0 . \tag{31}
\end{equation*}
$$

Corresponding eigenfunctions can be found which are functions only of of θ_{1}, namely $f_{\rho}\left(\theta_{1}\right)=c_{\rho}^{\frac{m-2}{2}}\left(\cos \theta_{1}\right)$, where the ρ 's are characterized by the condition

$$
\begin{equation*}
c_{\rho}^{\frac{m-2}{2}}(\cos \alpha)=0 . \tag{32}
\end{equation*}
$$

For instance, for $\alpha=\pi / 2$ we obtain $\rho_{1}=1$, independent of the dimension m.

It follows from the above that for any $\rho>0, \rho \neq \rho_{1}, \rho_{2}, \ldots$ we can find a harmonic function v_{ρ} in $K(\alpha)$ and a positive constant K_{ρ} with the properties

$$
\begin{equation*}
\left|v_{\rho}(x)\right| \leqq K_{\rho} r^{\rho}, \quad v_{\rho}(x)=-r^{\rho} \quad \text { for } \quad x \in \partial K(\alpha) . \tag{33}
\end{equation*}
$$

In fact, we can take v_{ρ} to be a constant multiple of f_{ρ}. For $\rho=$ ρ_{n}, and α^{\prime} sufficiently close to $\alpha\left(0<\alpha^{\prime}<\alpha\right)$ we can similarly find harmonic functions v_{ρ} (actually depending also on α^{\prime}) in
$K\left(\alpha^{\prime}\right)$ such that the conditions above are satisfied with $\partial K(\alpha)$ replaced by $\partial K\left(\alpha^{\prime}\right)$.

Let us denote by $G(x)=g(x, a)$ the Green's function of $K(\alpha)$ with pole at a. Let ψ_{n} be the above eigenfunction with eigenvalue μ_{n}, normalized by the condition $\int_{S(\alpha)}\left|\psi_{n}\right|^{2} \omega_{m-1}=1$. Then following Bouligand [3], Lelong-Ferrand has proved that for $r>|a|=t$
(34)

$$
G(x, a)=c_{\alpha} \sum_{n=1}^{\infty} t^{\rho_{n}} r^{\sigma_{n}} \frac{\psi_{n}\left(a^{*}\right) \psi_{n}\left(x^{*}\right)}{\sqrt{(\pi-2)^{2}+4 \mu_{n}}}
$$

where $\sigma_{n}=-\rho_{n}-m+2$, and c_{α} is the area of $S(\alpha)$ (see for instance [4] or [6]). From known estimates of these $\mu^{\prime} s$ and $\psi^{\prime} s$ we can conclude that if $a \simeq(1,0, \cdots, 0), r \geq 2$, then there exist positive constants k_{1}, k_{2} such that

$$
\begin{equation*}
k_{1} \leqq G(x) \operatorname{dist}\left(x^{*}, \partial S(\alpha)\right)^{-1} r^{\rho_{1}+m-2} \leqq k_{2} \tag{35}
\end{equation*}
$$

and we have also

$$
\begin{equation*}
\frac{\partial G}{\partial r}(x)=\sigma_{1} r^{\sigma_{1}-1} c_{\alpha} \frac{t^{\rho_{1}} \psi_{1}\left(x^{*}\right) \psi_{1}\left(a^{*}\right)}{\sqrt{(m-2)+4 \mu_{1}}}+o\left(r^{\sigma_{1}-1}\right), \tag{36}
\end{equation*}
$$

where $r \rightarrow \infty$. For $R \geqq 2$, the Green's function $G_{R}(x)=G_{R}(x, a)$ with pole at a of the region

$$
\begin{equation*}
K_{R}(\alpha)=\{x \in K(\alpha): r<R\} \tag{37}
\end{equation*}
$$

can be found to be

$$
\begin{equation*}
G_{R}(x)=G(x)-\left(\frac{R}{r}\right)^{m-2} G\left(\frac{R^{2}}{r^{2}} x\right) \tag{38}
\end{equation*}
$$

Hence it follows from (36) that there exists a constant $k_{3}>0$

$$
0 \leqq-\left.\frac{\partial G}{\partial r} R(x)\right|_{r=R} \leqq k_{3} R^{\sigma_{1}-1} .
$$

Finally, we need a lower bound on G_{R} on sufficiently large subsets of $K_{R}(\alpha)$. Take x such that $2 \leq r=\varepsilon R, 0<\varepsilon<1$; we obtain from (35)

$$
G_{R}(x) \geqq \operatorname{dist}\left(x^{*}, \partial S(\alpha)\right) R^{-\rho_{1}-m+2}\left(\frac{k_{1}}{\rho_{1}+m-2}-k_{2} \varepsilon^{\rho_{1}}\right)
$$

The expression in parentheses increases to $+\infty$ when $\varepsilon \rightarrow 0^{+}$. Therefore, there exists $\varepsilon_{0}>0$ such that for any r, R satisfying $2 \leqq r \leqq \varepsilon_{0} R$,
(40)

$$
G_{R}(x) \geqq \frac{d x+t(x, a S(\alpha))}{R^{V_{1}+\pi-7}}
$$

We can now prove our principal result.
THEOREM 1. Let u be a subharmonic function in $K(\alpha)$, which is harmonic near 0 and satisfies $u(x) \leqq \mathrm{Br}^{\rho}+\mathrm{C}$ for some positive constants B, C, ρ. Then for any $0<\beta<\alpha$, we can find a constant $M, M=M(u, \beta)$ such that for $R \geqq 2$

$$
\left.\int_{K_{R}(B)} \Delta u \leqq M R^{\rho^{*+m-2}}, \quad \rho^{*}=\max \left(\rho, \rho_{1}\right)\right)^{\dagger}
$$

Proof. Let us leave aside for the moment the exceptional cases $\rho=\rho_{1}, \rho_{2}, \cdots$. Since $u \neq-\infty$, the set $\{u=-\infty\}$ has measure zero and therefore we can find a point $a \in K(\alpha)$ as close as we want to $(1,0,0, \cdots, 0)$ such that $u(a) \neq-\infty$. Applying Green's formula to the function $w=u-B v_{\rho}-C, v_{\rho}$ as defined in (33), we have for $R \geqq 2$
(41) $\quad \int_{K_{F}(\alpha)} G_{R}(x, a) \Delta u+w(a)=\int_{\partial K_{R}(\alpha)} w \frac{\partial G_{R}}{\partial n} \omega_{m-I}$
where n denotes the inner normal. Clearly, $w \leq 0$ on $\partial K(\alpha)$; ${ }^{\text {for }} \rho=\rho_{1}$ we have to take $\rho^{*}=\rho_{1}+\varepsilon, \quad \varepsilon>0$.
therefore, setting $S_{R}(\alpha)=\left\{x: x^{*} \in S(\alpha), \quad|x|=R\right\}$, we have

$$
\begin{aligned}
\int_{\partial K_{R}(\alpha)} W \frac{\partial G_{R}}{\partial n} & \leqq A\left(I+K_{\rho}\right) R^{\rho} \int_{S_{R}(\alpha)} \frac{\partial G_{R}}{\partial n} \leqq M_{1} R^{\rho+\sigma_{1}-1} \int_{S_{R}(\alpha)} \omega_{m-1} \\
& \leqq M_{2} R^{\rho-\rho_{1}}
\end{aligned}
$$

These inequalities follow from (33), (39), and the definition of σ_{1}. Using (40), we conclude that
(42) $\quad \int_{K_{\varepsilon_{0}} R^{(B)}} \Delta u \leqq M_{3} R^{\rho+m-2}+M_{4} R^{\rho_{1}+m-2}|w(a)|+\int_{K_{2}(\alpha)} \Delta u$.

From here the conclusion of the theorem clearly follows, since the fact that u is harmonic near zero implies $\int_{K_{2}(\alpha)} \Delta u<\infty$. The exceptional cases are treated similarly by means of the construction in (33) above.

Remark 5. Clearly, the interesting case of theorem 1 occurs when $\rho>\rho_{1}$. If $\rho \leqq \rho_{1}$, the Phragmén-Lindelöf theorem (cf. $[5,6]$ for references) shows that $w \leqq 0$ everywhere in $K(\alpha)$; the dominant term $|w(a)|$ in inequality (42) just gives the integrability condition $u \not \equiv-\infty$.

Remark 6. The constant M_{3} in (42) is proportional to B. Thus, for $\rho>\rho_{I}$, theorem I assets that

$$
\overline{\lim }_{R \rightarrow \infty} R^{-\rho-m+2} \int_{K_{R}(\beta)} \Delta u \leqq C(\beta) B
$$

This estimate can be improved slightly to a bound analogous to that in Theorem I (\$2).

Because of its importance, we restate Theorem 1 in terms of analytic functions.

THEOREM 2. Suppose f is an analytic function in the cone $K(\alpha)$ of \mathbb{C}^{n} such that $\mathrm{f}(0) \neq 0$ and f has order $\rho>\rho_{1}(\alpha)$ and finite type. If $\sigma_{\beta}(R)$ denotes the area of the variety $V \cap K_{R}(\beta) \quad(\beta<\alpha)$, we have

$$
\overline{\lim }_{R \rightarrow \infty} \frac{\sigma_{\beta}(R)}{R^{\rho+2 n-2}} \leqq C(\beta) B
$$

(B is the constant appearing in the definition of the type of f)

REFERENCES

1. Bateman Manuscript Project, McGraw Hill, 1953.
2. C.A. Berenstein and M. Dostal, to appear.
3. G. Bouligand, Sur les fonctions de Green et de Neumann du cylindre, Bull. Soc. Math. de France 42 (1914), 168-242.
4. R. Courant and D. Hilbert, Methods of Mathematical Physics, vol. I,II, Interscience Publishers, 1962.
5. B. Dahlberg, Mean values of subharmonic functions, Arkiv for Matematik 11 (1973), 293-309.
6. M. Essen and J.L. Lewis, The generalized Ahlfors-Heins theorem in certain d-dimensional cones, Math. Scand. 33 (1973), 113-124.
7. L. Gruman, Entire functions of several variables and their asymptotic growth, Arkiv for Matematik 9 (1971), 14l-163.
8. E.W. Hobson, The Theory of Spherical and Ellipsoidal Harmonics, Cambridge Univ. Press, 1931.
9. B. Ja. Levin, Distribution of Zeroes of Entire Functions, Transl. of Mathematical Monographs, vol. 5, AMS, 1964.
10. W. Rudin, A geometric ariterion for algebraic varieties, Journal of Math. and Mech. 17 (1968), 671-683.
11. B. Schiffman, Applications of geometric measure theory to value distribution theory for meromorphic maps, in Value Distribution Theory, part A, M. Dekker, 1973.
12. W. Stoll, Value Distribution Theory, part B, M. Dekker, 1973.
13. R. Tijdeman, on the distribution of the values of certain functions, Ph.D. thesis, Universiteit van Amsterdam, (1969).

[^0]: * This research was supported in part by NSF Grant GP-38882.

[^1]: \dagger e.g. if $D \cap S_{1}$ has a smooth boundary with bounded curvature.

